

Cambridge IGCSE[™]

	CANDIDATE NAME				
	CENTRE NUMBER		CANDIDATE NUMBER		
*	CAMBRIDGE INTERNATIONAL MATHEMATICS 0607/1				
	Paper 1 (Core)		October/November 2024		
N			45 minutes		
ο	You must answe	er on the question paper.			

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- Calculators must not be used in this paper.
- You may use tracing paper. •
- You must show all necessary working clearly and you will be given marks for correct methods even if • your answer is incorrect.
- All answers should be given in their simplest form. •

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].

This document has 8 pages.

[Turn over

2

Area, A , of triangle, base b , height h .	$A = \frac{1}{2}bh$
Area, <i>A</i> , of circle, radius <i>r</i> .	$A = \pi r^2$
Circumference, <i>C</i> , of circle, radius <i>r</i> .	$C = 2\pi r$
Curved surface area, A , of cylinder of radius r , height h .	$A=2\pi rh$
Curved surface area, A , of cone of radius r , sloping edge l .	$A = \pi r l$
Curved surface area, A , of sphere of radius r .	$A=4\pi r^2$
Volume, <i>V</i> , of prism, cross-sectional area <i>A</i> , length <i>l</i> .	V = Al
Volume, V , of pyramid, base area A , height h .	$V = \frac{1}{3}Ah$
Volume, V , of cylinder of radius r , height h .	$V = \pi r^2 h$
Volume, V , of cone of radius r , height h .	$V = \frac{1}{3}\pi r^2 h$
Volume, V , of sphere of radius r .	$V = \frac{4}{3}\pi r^3$

© UCLES 2024

0607/11/O/N/24

3

Answer **all** the questions.

1 Write down the value of the square root of 64.

......[1]

Complete the table to show how 400 students travel to school.

	Year 10	Year 11	Total
Walk	70		85
Bicycle		20	85
Bus	85	40	
Car		25	105
Total	300		400

[3]

3 The cost of printing leaflets can be found using this formula.

Cost of printing = price per leaflet \times number of leaflets + fixed charge

The price per leaflet is \$0.30 and the fixed charge is \$65.

Work out the cost of printing 1000 leaflets.

鼮

4 Write 0.07 as a percentage.

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

2

A [1] 6 Change 1420 millilitres into litres. litres [1] 7 Malik records the number of students in each class at his school. Put a ring around the word that describes this type of data. continuous cumulative discrete random [1] 8 Work out the mode and the range of these numbers. 38 44 44 52 52 52 66 68 Mode 9 Write down a common multiple of 8 and 12.

4

DO NOT WRITE IN THIS MARGIN

10 Points A and B are plotted on a 1 cm^2 grid.

5

..... cm [1]

11 The probability that Sylvia wins a competition is 0.38.

Find the probability that Sylvia does not win the competition.

......[1]

12 Solve the equation.

2x - 1 = 7

13 Write $2 \times 2 \times 2 \times 2$ as a power of 2.

[Turn over

19 Write down all the prime factors of 30.

20 Solve the simultaneous equations.

$$3p + 2q = 29$$

 $5p - 2q = 27$

7

 $p = \dots$ [2]

21 A group of students are asked whether they like athletics (*A*) or basketball (*B*). The Venn diagram shows the number of students in each subset.

$$n(\mathsf{U}) = 30 \qquad \qquad n(A) = 9$$

(a) Find the value of x.

(b) Find the value of z.

$$z =$$
[1]

22 Work out
$$\frac{5 \times 10^7}{2 \times 10^3}$$
.

Give your answer in standard form.

Questions 23 and 24 are printed on the next page.

0607/11/O/N/24

[Turn over

DO NOT WRITE IN THIS MARGIN

8

NOT TO

DO NOT WRITE IN THIS MARGIN

SCALE

A sculpture is made from two cylinders. The height of each cylinder is 0.5 m. The diameter of the larger cylinder is 4 m and the diameter of the smaller cylinder is 2 m.

Work out the volume of the sculpture. Give your answer in terms of π .

24 **A** is a fraction.

Work out the missing fraction.

..... m³ [3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2024

0607/11/O/N/24